汇报范文网 >教案大全

古典舞把上蹲教案5篇

优秀的教案应该能够充分考虑到学生的学习特点和兴趣,教案写的好,能够使教师评估学生的学习情况和掌握程度,及时调整教学策略,以下是汇报范文网小编精心为您推荐的古典舞把上蹲教案5篇,供大家参考。

古典舞把上蹲教案5篇

古典舞把上蹲教案篇1

一、教学目标:

1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;21世纪教育网版权所有

(2)掌握古典概型的概率计算公式:p(a)=

(3)掌握列举法、列表法、树状图方法解题

2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.-2-1-cnjy-com

3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.

二、重点与难点:

1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.

教学设想:

1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.21教育名师原创作品

(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的.结果,即标号为1,2,3…,10.

师生共同探讨:根据上述情况,你能发现它们有什么共同特点?

2、基本概念:

(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本p121~126;

(2)古典概型的概率计算公式:p(a)=

议一议】下列试验是古典概型的是 ?

①. 在适宜条件下,种下一粒种子,观察它是否发芽.

②. 某人射击5次,分别命中8环,8环,5环,10环, 0环.

③. 从甲地到乙地共n条路线,选中最短路线的概率.

④. 将一粒豆子随机撒在一张桌子的桌面上,观察豆子落下的位置.

古典概型的判断

1). 审题,确定试验的基本事件.

(2). 确认基本事件是否有限个且等可能

什么是基本事件

在一个试验可能发生的所有结果中,那些不能再分的最简单的随机事件称为基本事件。(其他事件都可由基本事件的和来描述)

下面我们就常见的:

抛掷问题,抽样问题,射击问题.

探讨计数的一些方法与技巧.

抛掷两颗骰子的试验:

用( x,y )表示结果,

其中x表示第一颗骰子出现的点数?

y表示第二颗骰子出现的点数.

(1)写出试验一共有几个基本事件;

(2)“出现点数之和大于8”包含几个基本事件?

规律总结]:要写出所有的基本事件,常采用的方法有:列举法、列表法、树形图法 等,但不论采用哪种方法,都要按一定的顺序进行、正确分类,做到不重、不漏.

方法一:列举法(枚举法)

[解析】用(x,y)表示结果,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,则试验的所有结果为:

?结论】:(1)试验一共有36个基本事件;

(2)“出现点数之和大于8”包含10个基本事件.

方法二 列表法

坐标平面内的数表示相应两次抛掷后出现的点数的和,基本事件与所描点一一对应.

方法三 :树形图法

三种方法(模型)总结

1.列举法

列举法也称枚举法.对于一些情境比较简单,基本事件个数不是很多的概率问题,计算时只需一一列举即可得出随机事件所含的基本事件数.但列举时必须按一定顺序,做到不重不漏.

2.列表法

对于试验结果不是太多的情况,可以采用列表法.通常把对问题的思考分析归结为“有序实数对”,以便更直接地找出基本事件个数.列表法的优点是准确、全面、不易遗漏

3.树形图法

树形图法是进行列举的一种常用方法,适合较复杂问题中基本事件数的探究.

抽样问题

?例】? 一只口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出两个球.

(1)共有多少个基本事件?

(2)两个都是白球包含几个基本事件?

[解析]:(1)采用列举法:分别记白球为1,2,3号,黑球为4,5号,有以下10个基本事件.

(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),

(2,5),(3,4),(3,5),(4,5)

(2)“两个都是白球”包括(1,2),(1,3),(2,3)三种.

?例】 某人打靶,射击5枪,命中3枪. 排列这5枪是否命中顺序,问:

(1)共有多少个基本事件? .

(2)3枪连中包含几个基本事件? .

? (3)恰好2枪连中包含几个基本事件?

[例3】 一个口袋内装有大小相等,编有不同号码的4个白球和2个红球,从中摸出3个球.

问:(1)其中有1个红色球的概率是 .

? (2)其中至少有1个红球的概率是 .

课堂总结:

1. 关于基本事件个数的确定:可借助列举法、列表法、

树状图法(模型),注意有规律性地分类列举.

2. 求事件概率的基本步骤.

(1)审题,确定试验的基本事件

(2)确认基本事件是否等可能,且是否有限个;若是,则为

古典概型,并求出基本事件的总个数.

(3)求p(a)

?注意】当所求事件较复杂时,可看成易求的几个互斥事件的和,先求各拆分的互斥事件的概率,再用概率加法公式求解

练习

1、学习指导例1(1)、活学活用;(第76页)

2、随堂即时演练第5题(第78页)

古典舞把上蹲教案篇2

教学背景分析

(一)本课时教学内容的功能和地位

本节课内容是普通高中课程标准实验教科书人教a版必修3第三章概率第2节古典概型的第一课时,主要内容是古典概型的定义及其概率计算公式。

从教材知识编排角度看,学生已经学习完随机事件的概念,概率的定义,会利用随机事件的频率估计概率,学习了古典概型之后,学生还要学习几何概型,古典概型的知识在课本当中起到承前启后的作用。古典概型是一种特殊的概率模型。由于它在概率论发展初期曾是主要的研究对象,许多概率的最初结果也是由它得到的,因此,古典概型在概率论中占有重要地位,是学习概率必不可少的。

学习古典概型,有利于理解概率的概念,有利于计算事件的概率;为后续进一步学习几何概型,随机变量的分布等知识打下基础;它使学生进一步体会随机思想和研究概率的方法,能够解决生活中的实际问题,培养学生应用数学的意识。

(二)学生情况分析(所授对象接受知识情况和对本教学内容已知的可能情况)

1、学生的认知基础:

学生在初中已经对随机事件有了初步了解,并会用列表法和树状图求等可能事件的概率。在前面的随机事件的概率一节中,已经掌握了用频率估计概率的方法,即概率的统计定义。了解了事件的关系与运算,尤其是互斥事件的概念,以及概率的性质和概率的加法公式。这些知识上的储备为本节课的基本事件的概念理解和古典概型的概率公式的推导打下了基础。学生在前面的学习中熟悉了大量生活中的随机事件的实例,对于掷硬币,掷骰子这类简单的随机事件的概率可以求得。

2、学生的认知困难:

我调查了初中的数学老师,和高一的学生对这部分知识的理解,发现学生初中学习了等可能事件的概率,对简单的等可能事件可计算其概率,但没有模型化,所以造成学生只知其然,不知其所以然。根据以往的教学经验,如果不对概念进行深入的理解,学生学完古典概型之后,还停留在原有的认知水平上,那么,由于概念的模糊,会导致其对复杂问题的计算错误。

教学目标

1、学生通过对大量生活实例的对比分析,了解基本事件的特点,理解古典概型的概念、特征及其计算公式。

2、学生经历从生活实例抽象数学模型的过程,体现了从具体到抽象、从特殊到一般的辩证唯物主义观点;学生能够用随机的观点理解世界。

3、学生通过各种有趣的,贴近生活的实例,体会数学来源于生活,感受如何用数学去解释现实世界中的现象,解决生产生活中的问题。

教学重、难点及分析

本节课的重点是通过实例理解古典概型的两个特征及其概率计算公式。

由于学生已经在初中学过等可能事件的概率,对于古典概型的概率计算公式的理解和应用并不难,因此,我认为本节课的难点是对基本事件的概念的理解和对古典概型的两个特征的准确理解。

教学过程

由于我的问题开放性比较大,所以这里只能预设一下过程,实际教学过程中,要根据学生的回答情况做相应的调整。

1、提出问题:

问题1、生活中你能举出哪些随机事件的例子?

对于这个问题,学生可能举的例子非常多,例如:掷一枚质地均匀的硬币出现正面朝上;掷一枚质地均匀的骰子出现1点;汽车到十字路口正好遇到红灯;从围棋罐中摸出白子;买一张彩票中奖;射击正好中10环;种一粒种子正好发芽。等等。

如果学生举例困难,老师可以引导学生从某个生活场景中提取例子,比如上学路上,体育比赛当中,扑克牌等等。

我的设计意图是让学生从生活中举出大量随机事件的例子,继而可以从中分析研究,归纳出古典概型的特征。让学生举例,可以激发学生的求知欲,吸引学生主动探究。另一方面,也让学生从中体会到数学是解决实际问题的工具。

因为贯穿始终都要用到大家举出的实例,所以,这些实例当中应当含有古典概型的例子,也包括了不是古典概型的典型例子,如果学生没能举出,在学生举出实例之后,我会根据学生的例子情况进行适当的补充。必须具备的例子:掷硬币,掷骰子,种一粒种子,等车时间问题,向圆盘扔黄豆。

2、分析实例:

这一环节我想先让学生通过其已有的经验去求这些随机事件的概率。可能有的学生会用前面一节学习的统计方法,用频率去估计概率,对于这种方法,要给予肯定,同时要启发学生这种方法的缺点是费时费力,有时由于条件所限,也比较难操作。也有学生会利用初中求等可能事件概率的方法,求得一部分随机事件的概率,对于这一方法,先肯定。我的设计意图是,让学生联系前面所学,从其已有的认知基础出发,去感受新知。

在求概率的过程中,学生会发现有些随机事件的概率求出来了,有些却不能求出来,举例:

掷一枚质地均匀的硬币出现正面朝上的概率是1/2;

掷一枚质地均匀的骰子出现1点是1/6;

古典舞把上蹲教案篇3

本文题目:高三数学复习教案:古典概型复习教案

?高考要求】古典概型(b); 互斥事件及其发生的概率(a)

?学习目标】:1、了解概率的频率定义,知道随机事件的发生是随机性与规律性的统一;

2、 理解古典概型的特点,会解较简单的古典概型问题;

3、 了解互斥事件与对立事件的概率公式,并能运用于简单的概率计算.

?知识复习与自学质疑】

1、古典概型是一种理想化的概率模型,假设试验的结果数具有 性和 性.解古典概型问题关键是判断和计数,要掌握简单的记数方法(主要是列举法).借助于互斥、对立关系将事件分解或转化是很重要的方法.

2、(a)在10件同类产品中,其中8件为正品,2件为次品。从中任意抽出3件,则下列4个事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是 .

3、(a)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是 。

4、(a)同时抛两个各面上分别标有1、2、3、4、5、6均匀的正方体玩具一次,向上的两个数字之和为3的概率是 .

5、(a)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是 .

6、(b)若实数 ,则曲线 表示焦点在y轴上的双曲线的概率是 .

?例题精讲】

1、(a)甲、乙两人参加知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?

(2)甲、乙两人中至少有一人抽到选择题的概率是多少?

2、(b)黄种人群中各种血型的人所占的比例如下表所示:

血型 a b ab o

该血型的人所占的比(%) 28 29 8 35

已知同种血型的人可以输血,o型血可以输给任一种血型的人,任何人的血都可以输给ab型血的人,其他不同血型的人不能互相输血.小明是b型血,若小明因病需要输血,问:

(1) 任找一个人,其血可以输给小明的概率是多少?

(2) 任找一个人,其血不能输给小明的概率是多少?

3、(b)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8 的概率;(3)向上的点数之和不超过10的概率.

4、(b)将一个各面上均涂有颜色的正方体锯成 (n个同样大小的正方体,从这些小正方体中任取一个,求下列事件的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;

(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.

?矫正反馈】

1、(a)一个三位数的密码锁,每位上的`数字都可在0到10这十个数字中任选,某人忘记了密码最后一个号码,开锁时在对好前两位号码后,随意拨动最后一个数字恰好能开锁的概率是 .

2、(a)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是 .

3、(a)某射击运动员在打靶中,连续射击3次,事件至少有两次中靶的对立事件是 .

4、(b)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率 .

5、(b)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.

?迁移应用】

1、(a)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是 .

2、(a)从鱼塘中打一网鱼,共m条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共n条,其中k条有标记,估计池塘中鱼的条数为 .

3、(a)从分别写有a,b,c,d,e的5张卡片中,任取2张,这两张上的字母恰好按字母顺序相邻的概率是 .

4、(b)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是 .

5、(b)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.

(1)若点p(a,b)落在不等式组 表示的平面区域记为a,求事件a的概率;

(2)求p(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.

古典舞把上蹲教案篇4

一,教材的地位和作用

本节课是中数学3(必修)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,文科生不学习排列组合的情况下教学的 。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

二,教学目标

1、知识目标

(1)理解古典概型及其概率计算公式,

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2、能力目标

根据本节课的内容和学生的实际水平,通过抽牌游戏让学生理解古典概型的定义,引领学生探究古典概型的概率计算公式,归纳出求基本事件数的方法-列举法。

3 、情感目标

树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的.观点来理性的理解世界, 使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

三,教学的重点和难点

重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

难点:如何判断一个试验的概率模型是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四,教具

计算机多媒体,黑板,粉笔,教棒

五,教学方法

探究式与讲授式相结合

六,教学过程

前面我们学习了随机事件及其概率,今天我们将学习古典概型,古典概型是最简单,而且最早被人们所认识的一种概率模型,大约在1812年著名数学家拉普拉斯就已经注意并研究了古典概型概率的计算。下面先看一个抽牌游戏。

抽牌游戏:

有红桃1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,那么抽到的牌为红桃的概率有多大?

古典舞把上蹲教案篇5

教学目标:(1)理解古典概型及其概率计算公式,

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.

教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.

教学过程:

导入:故事引入

探究??

试验:

(1)掷一枚质地均匀的硬币的试验

(2)掷一枚质地均匀的骰子的试验

上述两个试验的所有结果是什么?

一.基本事件

基本事件的定义:

随机试验中可能出现的每一个结果称为一个基本事件

基本事件的特点:

(1)任何两个基本事件是互斥的

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

例1、从字母a,b,c,d中任意取出两个不同的字母的试验中,有几个基本事件?分别是什么?

探究二:你能从上面的两个试验和例题1发现它们的共同特点吗?

二.古典概型

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

思考:判断下列试验是否为古典概型?为什么?

(1).从所有整数中任取一个数

(2).向一个圆面内随机地投一个点,如果该点落在圆面内任意一点都是等可能的。

(3).射击运动员向一靶心进行射击,这一试验的结果只有有限个,命中10环,命中9环,….命中1环和命中0环(即不命中)。

(4).有红心1,2,3和黑桃4,5共5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张.

会计实习心得体会最新模板相关文章:

幼儿教案中班游戏教案优秀5篇

重阳节教案中班教案5篇

小班美术教案剪贴画教案5篇

教案幼儿园中班游戏教案5篇

不挑食教案中班教案5篇

中班教案保护眼睛活动教案5篇

小医院教案中班教案5篇

幼儿园大班教案美术教案5篇

哭和笑教案反思优质5篇

信息与技术教案通用5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    40849

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。