教案是需要定期进行反思和修改,以不断完善,通过教案,教师可以更好地应对不同水平的学生,进行差异化教学,以下是汇报范文网小编精心为您推荐的11正数和负数教案5篇,供大家参考。
11正数和负数教案篇1
(第1课时)
一、教学目标
知识与技能:使学生了解正数与负数是从实际需要中产生的;
过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;
情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力
二、教学重点和难点
负数的引入和意义
三、教学过程
创设情景,生活实例引入,观察猜想,合作探究
(一)、从学生原有的认知结构提出问题
大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4.87、……
为了表示“没有人”、“没有羊”、……我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.
(二)、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.
它们是具有相反意义的两个量.
现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,“高于”和“低于”其意义是相反的.
又如,某仓库昨天运进货物 吨,今天运出货物 吨,“运进”和“运出”,其意义是相反的.
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量筒明地表示出来了.
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进纲物 吨,记作+ ;运出货物 吨,记作- .
教师讲解:什么叫做正数?什么叫做负数.
强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号
(三)、运用举例 变式练习
例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4,8,+73,-2,7, , ,-8,12, - ;
正数集合 负数集合
此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合
课堂练习
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{ …},
负数集合:{ …}
四、课堂小结
由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“-”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃
五、作业布置
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度
2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
3.在下列各数中,哪些是正数?哪些是负数?
-16,0,004,+ ,- , 25,8,-3,6,-4,9651,-0,1.
4.如果-50元表示支出50元,那么+200元表示什么?
5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位温0.1米记作什?
6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?
7.一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)“记作8米”表明什么?
1.1.2正数和负数
--(第2课时)
一、教学目的
1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。
2、数学思考:体会数学符号与对应的思想。
3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能 力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。
二、教学重难点
教学重点:进一步理解正、负数及零表示的量的意义
教学难点:理解负数及零表示的量的意义
三、教学过程
习题引入:
1.给出一组数,请学生说说哪些是正数、负数。
2.学生举例说明正、负数在实际中的应用。
?例1】
1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。
2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)
?例2】
1 .一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个 月的体重的增长值。
2.2001年 商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%.英国减少-3.5%,意大利增长0.2 %,中国增长7.5%,
在学生已初步掌握新知识的前提下,由问题1 、2提高学生综合解决实际问题的能力
2.课堂练习: p5. 4 5
教师巡视、指导。学生交流、完成练习。对所学知识的巩固是教学的一个重要环节,这里的练习可以分散进行
四.课堂小节
这堂课我们学习了那些知识?你能说一说吗?
教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。
五.作业布置
p5 7 、8题
11正数和负数教案篇2
一.知识与技能
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.
二.过程与方法
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.
三.情感态度与价值观
鼓励学生积极思考,激发学生学习的兴趣.
教学重、难点与关键
1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量.
2.难点:正数、负数概念的综合运用.
3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量.
教具准备
投影仪
教学过程
四、复习提问课堂引入
1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?
2.如果用正数表示盈利5万元,那么-8千元表示什么?
五、新授
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.
2.20xx年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率.
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.
解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
2.六个国家20xx年商品进出口总额的增长率分别为:
美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.
归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的'意义.
六、巩固练习
1.课本第5页的第8题.
点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多.
2.补充练习.
若向西走10米,记作-10米,如果一个人从a地先走12米,再走-15米,你能判断此人这时在何处吗?
解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从a地先向东走12米,接着再向西走15米,此人这时应该在a地的西方3米处.
七、课堂小结
通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量.
八、作业布置
课本第5页习题1.1第4、5、6、7题.
九、板书设计
正数和负数
11正数和负数教案篇3
正数与负数
【教学目标】
了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数;会用正负数表示生活中常用的具有相反意义的量;培养学生的数学应用意识。
【内容简析】
本节是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践。能正确识别负数、用正负数表示具有相反意义的量是本节的难点。教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点。教学中应多结合实例加深对负数的认识。
【流程设计】
一、情景创设
1.引导学生回忆小学学过的数,并回答小学学过的最小的数是谁?是否存在比零小的数?在小学遇到0-2、3-5这类题会算吗?
2.你看过电视或听过广播中的天气预报吗?(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25°c,10°c,零下10°c,零下30°c。
为书写方便,将测量气温写成25,10,-10,-30,再如中国地形图上的海拔标注数据8848.13,-155之类的数是什么意思?怎样用数学来区分高出警戒水位1米与低于警戒水位1米呢?
二、新知探索
1.教师由以上实例归纳出正数与负数的描述性概念。
像25,10,8848,大于0的数叫正数;像-10,-30,-155这样在正数前面加上“-”(负号)的数叫做负数;0既不是正数也不是负数。
给出板书:
正数——大于0的数
负数——正数前面加“-”号的数(小于0的数)
0——既不是正数,也不是负数
说明:①负数前面的“-”号的读法,“-5”应读作“负5”;
②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”;
③“0”是第一个自然数,可看作正数与负数的分界点,“0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。
小资料:世界各国对负数的认识和接受也有一个过程。如1484年法国数学家曾得到二次方程的一个负根,但他不承认它,说负数是荒谬的数。1545年卡尔丹承认方程中可以有负根,但认为它是“假数”。直到1831年还有数学家认为负数是“虚构”的,他还特意举了一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x= -2,他认为这个结果是荒唐的,他不懂得x= -2正是说明两年前父亲的岁数将是儿子的两倍。
三、范例共做
例1:所有正数组成正数集合,所有负数组成负数集合。把下列各数中的正数和负数分别填在表示正数与负数集合的圈里:
-11,4.8,+7.3,0,-2.7,-8.12
正数集合负数集合
例2:自己任意写出六个正数与六个负数分别填入相应的大括号里:
正数集合{ }
负数集合{ }
注:由于正数和负数都有无数个,在表示正数和负数的集合中常加上省略号。
例3:规定向前走为正,两个学生一组做游戏,如
甲:向前走2步乙:2
甲:向后走3步乙:-3
甲:-4乙:向后走4步
甲:0乙:原地不动
注:通过设计类似的游戏活动使学生加深对负数的认识。
四、巩固练习
1.-10表示支出10元,那么+50表示
如果零上5度记作5°c,那么零下2度记作
如果上升10m记作10m,那么-3m表示;
太平洋中的马里亚纳海沟深达11034米,可记作海拔米(即低于海平面11034米)。
比海平面高50m的地方,它的高度记作海拨;
比海平面低30m的地方,它的高度记作海拨;
2.下面说法正确的是()
a.正数都带有“+”号
b.不带“+”号的数都是负数
c.小学数学中学过的数都可以看作是正数
d.0既不是正数也不是负数
3.数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作。
4.某物体向右运动为正,那么-2m表示,0表示。
5.一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸。
五、小结提高
1.正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。如果把一种意义规定为正,则相反意义的量规定为负。常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;
2.正数是比零大的数,正数前面加“-”号的数叫负数。所有负数小于零,零既不是正数也不是负数。
六、课后思考
1.-a一定是负数吗?
2.在月球表面,“白天”的温度可达127°c,太阳落下后的“月夜”气温竟下降到-183°c,请问在月球上温差是多少度?
11正数和负数教案篇4
教学目标
1、通过对零的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量;
2、进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;
3、体验数学发展的一个重要原因是生活实际的需要;激发学生学习数学的兴趣。
重点深化对正负数概念的理解。
难点正确理解和表示指定方向变化的量,表示相反意义的'量。
教学过程
一、创设情景
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分 别表示它们。
温度计上的-2,0,3分别表示是么意义?
二、自主探究
(1)、一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
(2)、20xx年下列国家的商品进出口总额比上一年的变化情况是: 美国减少6.4%,德国增长1.3%, 法国减少2.4%,英国减少3.5%, 意大利增长0.2%,中国增长7.5%.写出这些国家20xx年商品进出口总额的增长率。
11正数和负数教案篇5
教学目标
1、使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;
2、会初步应用正负数表示具有相反意义的量;
3、使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4、培养学生逐步树立分类讨论的思想;
5、通过本节课的教学,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作—5℃;比海平面高8848米,记作8848米,比海平面低155米记作—155米。由这两个实例很自然地,把大于0的数叫做正数,把加“—”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的基础上,对有理数的.概念的理解就简便多了。
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
三、正数与负数概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“—”号的数是负数。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…—6,—4,—2,0,2,4,6…,不能被2整除的数是奇数,如…—5,—4,—2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
四、有理数的分类
整数和分数统称为有理数。
1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
5)到目前为止,所学过的数(除π外)都是有理数。
会计实习心得体会最新模板相关文章: