通过设定具体的学习目标,教案能够帮助学生明确学习方向,增强动力,出色的教案为课堂活动提供了框架,有助于实现有效的学习管理,以下是汇报范文网小编精心为您推荐的圆锥教案8篇,供大家参考。
圆锥教案篇1
教学目标
1.1知识与技能:
(1)使学生认识圆锥,掌握圆锥的特征及各部分名称。
(2)使学生会画圆锥的平面图形及掌握测量圆锥的高的方法。
(3)培养学生的实验能力,发展学生的空间观念。
1.2过程与方法:
经历圆锥的认识过程,体验探究发现的学习方法。
1.3情感态度与价值观:
感受数学与实际生活的联系,激发学生学习数学的兴趣,培养学生积极参与,自主学习的精神。
教学重难点
2.1教学重点
掌握圆锥的特征,认识圆锥的高。
2.2教学难点
掌握圆锥高的测量方法。
教学工具
多媒体课件,圆柱形铅笔,圆锥实物及模型,直尺,直角三角形硬纸
教学过程
一、回顾强化
老师啊先给大家准备了个谜语,看谁能快速的猜出谜底来,请看屏幕。出示谜语“身体长得细又长,天生美丽黑心肠,上平下尖纸上爬,越爬越短越伤心”(猜一学习用具)
师:不错。谜底就是老师手上拿的铅笔。
课件出示一支圆柱形铅笔。
师:同学们这支铅笔是什么形状的?
生:是圆柱体。
师:你能说说它具有什么特征吗?
预设
生1:圆柱有三个面,有上下两个底面,是完全相同的两个圆。
生2:圆柱有一个侧面是曲面。
生3:两个底面之间的距离叫做圆柱的高,有无数条高。
生4:圆柱侧面展开是长方形。
二、创设情境,激情导入
师:圆柱的特征同学们掌握得非常好,今天我们学习一种新的几何形体,请同学们仔细的看老师的操作(师拿出一支圆柱形铅笔用转笔刀削铅笔)
师:想想被削的这一端会发生什么变化?(
生:越来越细,越来越尖。
师:老师如果把削成的笔尖部分切下来,会是什么形状叫呢?同学们请看屏幕。
课件:把削成的笔尖部分(圆锥体)垂直切下来。
师:同学们知道被切下来的是什么几何形体吗?
生:是圆锥体。
师揭示课题:
师:不错,我们把象这样的几何形体叫做圆锥体,简称圆锥,今天我们就来学习《圆锥的认识》。
板书课题《圆锥的认识》。
三、探究体验。
1、列举,提出问题。
师:老师为我们同学们准备了一些生活中的圆锥体或近似圆锥体的图片,你能把他们找出来吗?
同桌同学互相讨论。
(出示一组生活中圆锥的例子,丰富学生的感知)
师:刚才我们共同找出了一些生活中的圆锥,接下来再让我们共同欣赏课本带给我们的精彩画面(教材23面图),请同学们按照老师的样子用铅笔沿着实物的轮廓把你找到的圆锥体描画出来。
学生描画课本中圆锥的轮廓。
师:在日常生活和生产劳动中,同学们还知道哪些物体的形状是圆锥体的?
生1:陀螺的下半部分
生2:盖房子用的铅锤的形状是圆锥体的。
生3:……。
师:看来圆锥形的物体给我们生活的带来了不少的便利,我们只有对它了解的更多,才能更好的得用它。
2、引导观察圆锥的特征
师:下面请同学们拿出圆锥体模型,看一看、摸一摸、同桌同学互相说说你的感觉。
学生手拿圆锥体模型观察、想。
同桌交流、讨论。教师深入小组和学生一起进行探讨。
师:谁愿把你们的研究成果告诉给大家。
生汇报师板书:(预设展示过程)
圆锥的特征。
生1:我们发现圆锥上面细,下面粗。
生2:圆锥有一个尖尖的部分,摸起来很扎手。
师:我们把它叫做顶点。
(学生讲到此点时,配合图片在图上标出,再请一个同学上台指出黑板上老师画的圆锥的顶点并标出来,其他同学在答题纸上标出圆锥的顶点)
生3:圆锥有一个弯曲光滑的面。
师:我们可以把它叫做侧面。这个面是曲面。
(学生讲到此点时,配合图片在图上标出)
师:同学们回顾下圆柱的侧面展开是什么图形?
生:长方形。
师:那么圆锥的侧面如果把它展开来会是个什么形状呢?
师展开一个圆柱的侧面,让学生观察。
生:圆锥的侧面展开是个扇形。
生4:圆锥有一个圆形的面,我们可以把他叫做底面。
(学生讲到此点时,配合图片在图上标出,再请一个同学上台指出黑板上老师画的圆锥的底面并标出来,其他同学在答题纸上标出圆锥的底面)
3、师引导观察圆锥的高
探究测量圆锥高的方法
a﹑认识高
师:刚才我们认识了圆锥的顶点、侧面和底面。我们知道圆柱的高是两底面之间的距离,并且有无数条高。那么我们今天所学习的圆锥的高会是一个什么样的情况呢?
请同学们带着这个问题阅读课本第24页例1的前半部分。
下面老师请一个同学利用自学所学到的'知识上来画一画黑板上这个圆锥的高。其他同学可以在答题纸上画出圆锥的高。想一想圆锥的高是连接哪两个点所得到的线段?
师:连接这两个点所得到的线段我们也可说成是从圆锥的顶点到底面圆心的距离。下面我们把书翻到24页找到圆锥高的定义,把这一句话齐读一遍。
师:通过我们对圆锥的高的了解,想一想圆锥的高有几条?(
生:一条。
师:为什么只有一条?
生:因为圆锥只有一个顶点和底面只有一个圆心。
b﹑测量高
师:由于圆锥的高在它的内部,那么我们怎样测量圆锥的高呢?
引导学生先想一想,然后利用老师给大家准备好的圆锥,同桌同学共同探究圆锥的高的测量方法。(以同桌为单位进行操作。教师适当引导指正。)
学生汇报,师通过幻灯小结.
生1:测量时,圆锥的底面要水平地放;
生2:上面的平板要水平放在圆锥的顶点上面。
师:通过刚刚的测量,所以我们今后在表示圆锥高的时候,高还可以表示在圆锥的外面。(师演示)
4、虚拟的圆锥
(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将一个直角三角形绕
着一条直角边旋转,会形成什么形状?
(2)通过操作,使学生发现转动出来的是圆锥。并说一说圆锥的顶点、高和底面圆心及底面半径。
四、应用反馈
1、教材第32页“做一做”。
组织小组内同学相互指出各个圆锥的底面、侧面和高,教师巡视指导。
然后集中进行讲解。
2、教材第35页练习六第2题。
组织学生独立思考后指名汇报。
3、课外练习
(1)、幻灯出示练习题:将下面图形分类,说说每类图形的名称和特征。
学生同桌交流,进行分类。
(2)、联系前面所学的圆柱,请同学们在答题纸上写写圆柱和圆锥的联系和区别。
(学生汇报结果)
预设:
生1:圆柱是由两个底面和一个侧面三部分组成。圆柱的底面都是圆,并且大小一样。圆柱的侧面是曲面。一个圆柱有无数条高。
生2:圆锥有一个顶点,圆锥的底面是个圆,侧面是个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥有一条高。
4、幻灯出示生活中的数学。
课后小结
1、同学们,通过这堂课的学习,我们对圆锥有了个初步的认识,知道了圆锥的一些特征。
2、总结圆锥的特征:圆锥有一个顶点,圆锥的底面是个圆,侧面是个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥有一条高。
板书
圆锥的认识
圆锥教案篇2
【教学内容】九年义务六年制小学数学第十二册第42-43页。
【教学目的】
1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。
2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。
3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想。
【教学重点】圆锥的体积计算。
【教学难点】圆锥的体积公式推导。
【教学关键】圆锥的体积是与它等底等高的圆柱体积的三分之一。
【教具准备】简易多媒体、等底等高的圆柱和圆锥空心实物各一个。
【学具准备】三种空心圆锥和圆柱实物各一个
【教学过程】
一、复习
1、圆柱的体积公式是什么?用字母怎样表示?
2、求下列各圆柱的体积。(口答)
(1)底面积是5平方厘米,高是6厘米。
(2)底面半径4分米,高是10分米。
(3)底面直径2米,高是3米。
师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。(板书:圆锥的体积)
二、新课教学
师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。
生:圆锥的底面是圆形的。
生:从圆锥的顶点到底面圆心的距离是圆锥的高。
师:你能上来指出这个圆锥的高吗?
师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。
师:你们看到过哪些物体是圆锥形状的?(略)
师:对。在生活中有很多圆锥形的物体。
师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。
出示小黑板:
1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?
2、圆锥的体积怎么算?体积公式是怎样的?
学生分组做实验,老师巡回指导。
师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?
生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的'圆柱体权的1/3。
板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。
师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?
生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。
师:说得很好。那么圆锥的体积怎么算呢?
生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。
师:谁能说说圆锥的体积公式。
生:圆锥的体积公式是v=1/3sh。
师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。
师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。
生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。
生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。
师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。
师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。
师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。
例l:一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
(两名学生板演,老师巡视)
师:这位同学做的对不对?
生:对!
师:和他做的一-样的同学请举手。(绝大多数同学举手)
师:那么这位同学做错在哪里呢?(指那位做错的同学做的)
生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。
师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。
圆锥教案篇3
教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;
教学准备:幻灯片、电脑制图
教学过程:
一. 出示课题,引人复习内容;
1.同学们,今天这节课,我们要进行圆柱体和圆锥体体积的复习;
板书课题
2.圆柱体的体积怎么求?
板书:v圆柱=sh
3.圆锥体的体积怎么求?
板书:v圆锥=1/3 sh
4.公式中的 s、h分别表示什么?1/3表示什么?
小结:求圆柱体和圆锥体的体积,首先要正确应用公式。
板书:1.正确应用公式
当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?
二. 基础练习
根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)
计算这些形体的体积:
(1)s底=1.5 平方米 h=5 米 求v圆柱
(2)s底=1.5 平方米 h=5 米 求v圆锥
(3)r=10分米 h=2 米 求v圆柱
(4)c=6.28米 h=6 米 求v圆锥
(1)、 (2)两题条件相同,所求不同;
板书:2. 圆锥体积一定要乘 1/3
(3)、 (4)两题都要先求出底面积;
板书:3. 单位名称要统??
三. 实际应用练习:
我们还可应用到生活中去解决一些实际问题:(幻灯出示)
1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?
默读后问同学:做这道题前有没有准备工作要做?(单位要统一)
2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?
默读后问同学:要注意麦堆是什么形状?
请两位同学板演,其余在本子上自练;
3.小结:在解这两题时都用到了什么计算?
四. 提高练习:
(幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的`圆锥形钢材,水面升高了5厘米,这段钢材高为多少?
(电脑出示图案)观察水面变化情况,求什么?
1.钢材是什么形状?求圆锥体的高用什么方法?h=3v/s,3v表示什么?
2. s可以通过哪个条件求?( r=10厘米)
3.体积是什么呢?(电脑屏幕逐步演示)
(1)当钢材放入时水面上升,取出时水面下降,和什么有关?
(2)放入时水面为什么会上升?
(3)圆锥体占据了水桶里哪一部分水的体积?
(4)上升的水的体积等于什么?
(5)求圆锥形钢材的体积就是求什么?
(6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)
(7)板演,同学自练;
五. 圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)
1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)
2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;
3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。
六、总结:
这节课我们复习了什么?
圆锥教案篇4
教学内容:
教材第9~10页的例1和第10页的练一练,完成练习二第1~3题。
教学目标:
1.使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高.
2.使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。
3.使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
教学重点:
掌握圆柱、圆锥的特征。
教学难点:
掌握圆柱、圆锥的特征及空间观念的形成。
教学资源:
课件、学生每人准备一个圆柱或一个圆锥形实物。
教学过程:
一、创设情境,初步感知。
1.课件出示:圆柱、圆锥、正方体、长方体等立体图形的示意图
2.教师:这么多物品,你知道它们各是什么形状吗?
指名学生分别说。
谈话:回忆一下学过的图形各有什么特征?学生回答。
谈话:不论长方体还是正方体,它们都是由一些平面图形围成的.立体图形,你知道图(4)是什么形状吗?学生回答,教师板书:圆柱
图(5)是什么形状?板书:圆锥
你能说一说日常生活中你见过那些圆柱和圆锥?(指名学生说,如铅笔、烟囱、套管、铅锤等)
这节课就让我们一起进一步认识圆柱、圆锥。
二、合作探究,认识特征
(一)认识圆柱的特征
1.激发兴趣、提出问题
谈话:对于圆柱和圆锥,你想知道有关它们的哪些问题?
学生回答,教师把有关圆柱、圆锥的问题写在黑板上。
谈话:同学们真聪明,提了这么多有价值的问题,今天这节课我们先来研究一下圆柱、圆锥的特点,其它问题我们以后再来研究,好吗?
2.认识圆柱的底面和侧面
教师出示圆柱实物并将直尺靠在圆柱实物边上,告诉学生上下粗细相同的圆柱叫直圆柱。
谈话:请同学们拿出自己准备的圆柱实物,仔细看一看。
①先看一看,你认为它有几个面?
②再摸一摸每个面有什么特征?
③然后小组内互相说一说自己手中的实物和同学的实物有什么特点?
圆锥教案篇5
目 标:
1、理解和掌握圆锥体体积的计算方法,并能运用公式求圆锥体的体积,并能解决简单的实际问题。
2、通过动手实践,自主探求圆锥体积的计算方法,培养学生初步的逻辑推理能力和创新意识,发展空间观念。
3、激发学生热爱生活,勇于探索、乐于与人合作的情趣。
重 点:掌握圆锥体积的方法
难 点:公式的推导
准 备:沙,圆柱教具若干个,圆锥一个,其中要有一组等底等高的圆柱和圆锥
教 程:
一、准备
同学们,我们以前研究过一些立体图形,如长方体,正方体,圆柱体,它们的体积各是怎样计算的呢?
二、诱发
课件演示稻谷丰收的景象。师述:稻谷丰收了,农民伯伯忙着收割稻谷,他们把收好的稻谷堆成一个这样的图形(圆锥形谷堆),同学们你们认识吗?你能算出这堆稻谷的体积吗?它和圆柱的体积有什么联系呢?这就是我们这节课要学习的内容。
三、探究释疑
1、初次猜想
⑴根据我们所学过的内容,请同学们猜一猜,圆锥的体积应该怎样计算?
⑵圆锥的体积是否能用“底面积×高”来计算呢
⑶学生通过观察,发现“底面积×高”不是圆锥的体积,而是与它等底等高的圆柱的体积。
2、再次猜想
⑴通过模型演示,
⑵根据学生回答,从而得到如下结论:
圆锥的体积 = ×圆柱的体积(等底等高)
3、分组实验进行验证
⑴让学生用三个不同的圆柱体和一个圆锥(其中必有一组等底等高的圆柱和圆锥)来进行实验。
⑵分组讨论,分组汇报
圆锥的体积 = ×圆柱的体积(等底等高)
用字母表示:v=1/3sh
4、联系实际,进行运用
⑴出示例1,学生尝试练习,集体订正。
⑵教学例2、课件出示:
麦收季节,张小红把她家收的小麦堆成一个近似圆锥的麦堆,又给出测量的数据,让学生看图编一道求小麦重量的应用题。
编好后,分组讨论计算
学生自己列式计算,集体订正
四、转化
1、基础题
⑴下面有四组图形,你能根据每组图形中左图的体积,求出右图的体积吗?为什么?
24立方米 9立方米 12立方米
⑵一个圆锥的底面直径是4厘米,高5厘米,它的体积是多少?
2、提高题
有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆柱体,被削去的体积是多少?
3、思考题
把一个棱长6厘米的正方体铁块和底面直径、高都是6厘米的圆柱形铁块,熔铸成一个直圆锥体,如果这个直圆锥体和圆柱的底面大小一样,这个直圆锥体的高是多少厘米?(得数保留整数)
五、应用
1、 基础题:p44-t3、4
2、 提高题:p45-t10
3、 思考题:p45-t11、12
圆锥教案篇6
教学目标
1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。
2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。
3、培养学生认真审题,仔细计算的习惯。
重点:进一步掌握圆锥的体积计算及应用
难点:圆锥体积公式的灵活运用
教学过程
一、知识回顾
1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?
2、学生说,教师板书:
圆锥圆柱
特征1个底面2个
扇形侧面展开长方形
体积v=1/3shv=sh
二、提出本节课练习的内容和目标
三、课堂练习
(一)、基本训练
1、填空课本1----2(独立完成后校对)
2、圆锥的体积计算
已知:底面积、直径、周长与高求体积(小黑板出示)
(二)、综合训练:
1、判断
(1)圆锥的体积等于圆柱的1/3
(2)长方体、正方体、圆柱和圆锥的体积公式都可用v=sh
(3)一个圆柱形容器盛满汽油有2.5升,这个容器的容积就是2.5升
(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米
2、应用:练习四第45题任选一题
3、发展题:独立思考后校对
四课堂小结:说说本节课的收获
圆锥教案篇7
教学目标:
1.组织学生参与实验,从而推导出圆锥体积的计算公式。
2.会运用圆锥的体积计算公式计算圆锥的体积。
3.培养学生观察、比较、分析、综合的能力以及初步的空间观念。
4.以小组形式参与学习过程,培养学生的合作意识。
5.渗透转化的数学思想。
教学重点:
理解和掌握圆锥体积的计算公式。
教学难点:
理解圆柱和圆锥等底等高时体积间的倍数关系。
教学资源:
等底等高的圆柱和圆锥容器一套,一些沙或米等。
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具---长方体,正方体圆柱体,然后板书相应的计算公式。)
2.我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)
3.(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高。)
4.大家觉得我们今天要研究的圆锥的体积可能转化为什么图形来研究比较简单呢?能说说自己的`理由吗?
5.它们的体积之间到底有什么关系呢?
二、实验操作、推导圆锥体积计算公式。
1.课件出示例5。
(1)通过演示使学生知道什么叫等底等高。
(2)让学生猜想:图中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?
(3)实验操作,发现规律。
(用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。
2.教师课件演示
3.学生讨论实验情况,汇报实验结果。
4.启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积 1/3=底面积高1/3
用字母表示:v= 1/3sh
小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以1/3 ?
5.教学试一试
(1)出示题目
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、发散练习、巩固推展
1.做练一练第1.2题。
指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3 。
2.做练习四第1.2题。
学生做在课本上。之后学生反馈。错的要求说明理由。
四、小结
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
学生交流
五、作业
练习四第3题。
圆锥教案篇8
教学目标:
1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:
等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
教学过程设计:
一、复习旧知,做好铺垫。
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积(屏幕出示:圆柱体的体积=底面积×高)
2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高6厘米,体积=
(2)底面半径是2分米,高10分米,体积=
(3)底面直径是6分米,高10分米,体积=
3、认识圆锥(课件演示),并说出有什么特征
二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)
1、探讨圆锥的体积计算公式。
教师:怎样推导圆锥的体积计算公式呢在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的学生回答,教师板书:
圆柱(转化)长方体
圆柱体积计算公式(推导)长方体体积计算公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么(圆柱和圆锥的底和高有什么关系)
(学生得出:底面积相等,高也相等。)
教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)
(2)为什么既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行
(不行,因为圆锥体的体积小)
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验,并借助课件演示。
(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)
a、谁来汇报一下,你们组是怎样做实验的
b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系
(学生发言:圆柱体的体积是圆锥体体积的3倍)
教师:同学们得出这个结论非常重要,其他组也是这样的吗
学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。
(板书圆锥体体积计算公式)
教师:我们学过用字母表示数,谁来把这个公式用字母表示一下(指名发言,板书)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗(不需要)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢(因为是等底等高的`圆柱体和圆锥体。)
(教师给体积公式与“等底等高”四个字上连线。)
进一步完善体积计算公式:
圆锥的体积=等底等高的圆柱体体积×1/3=底面积×高×1/3v = 1/3sh
教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
课件出示:
想一想,讨论一下:
(1)通过刚才的实验,你发现了什么
(2)要求圆锥的体积必须知道什么
学生后讨论回答。
三、应用求体积、解决问题。
1、口答。
(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少
(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少
2、出示例题,学生读题,理解题意,自己解决问题。
例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少
a、学生完成后,进行小组交流。
b 、你是怎样想的和怎样解决问题的。(提问学生多人)
c 、教师板书:
1/3×19×12=76(立方厘米)
答:它的体积是76立方厘米
3 、练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少(学生在黑板上只列式,反馈。)
我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
4、出示例2:要求学生自己读题,理解题意。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克(得数保留整千克)
(1)提问:从题目中你知道了什么
(2)学生独立完成后教师提问,并回答学生的质疑:
3.14×(4÷2)2×1.2× 1/3表示什么为什么要先求圆锥的体积得数保留整千克数是什么意思
5、比较:例1和例2有什么不同的地方
(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1是直接求体积,例2是求出体积后再求重量。
会计实习心得体会最新模板相关文章: